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The numerical simulation of electromagnetic phenomena involving moving bodies is always challenging when the effect of motion
becomes significant. We propose a novel method by which the first order “motional term” of the partial differential equation (PDE)
can be incorporated into PDE coefficients normally describing material characteristics. The method is general in the sense that
various types of moving media (e.g. metal, dielectric) can be treated in a similar way. The most straightforwardly it can be utilized in
the analysis of models with stationary geometry, and it may have some advantages over other approaches in this field. The method
is demonstrated through examples.
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I. Introduction

E lectromagnetic problems involving moving bodies have

to be analyzed frequently in the practice. In certain cases

the moving domain can be taken unbounded in the direction of

motion and its cross section invariant to the movement (trans-

lation or rotation), in other words, the geometry is stationary.

In this manner can be modeled among others electromagnetic

launchers [1], the homopolar generator (or Faraday disc) and

the rather “exotic” Wilson&Wilson experiment [2].

It is characteristic to all these problems that the governing

second order partial differential equation (PDE) —derived

from Maxwell’s equations— is extended by a first order term

regarding the moving medium. In some finite element method

(FEM) programs (e.g. in Comsol Multiphysics R© [3]) an in-

duced Lorentz current density term for the moving conducting

medium is implemented, as it is deemed the most important

effect of motion. Nevertheless a generic PDE template of this

kind —e.g. for treating moving dielectrics— is not provided

out-of-the-box in the available FEM programs, as a rule. In the

lack of an appropriate predefined “problem type”, the user who

is bound to a particular software commonly thinks in terms of

the following two solutions:

a) If the PDE parameters can be specified flexibly in the

program, i.e. arbitrary expressions containing coordinates

and field values can be set, then —as a workaround— the

first order term may be put to the right hand side as part of

the excitation. However, such term acts formally as a kind

of “nonlinear constraint”, and may require nonlinear solver.

b) In case the user has sufficient access to (and skill of)

controlling the software at a lower level, the weak form of

the corresponding PDE can be implemented (see e.g. [4]).

Note however, that stability and convergence problems

might occur due to the first order term when the motional

effect is significant, and that sometimes special techniques

like upwinding must be used to overcome this [5].

The original motivation of this work is to implement and solve

problems involving stationary moving media within a general

purpose FEM environment, without resorting to the above

mentioned workarounds. The proposed method is based on the

conversion of movement to specific material parameters. When

doing this we are aware of the fact that most of the available

FEM softwares are capable of treating inhomogeneous and

anisotropic media. Besides the formal elegance of this method,

the drawbacks of solutions a) and b) are partly avoided: a linear

solver can be used, and also the convergence properties may

be improved, respectively.

II. Theory

The moving medium can generate magneto-electric coupling,

because the Lorentz-transformation from the co-moving frame

to the laboratory frame naturally mixes electric and magnetic

fields. This phenomenon is reflected well in Ohm’s law and

Minkowski’s constitutive relations:

J = σ(E + v × B) (1)

D = ε0εr E +
εrµr − 1

c2
0

v × H (2)

B = µ0µr H −
εrµr − 1

c2
0

v × E (3)

These equations apply to moving linear isotropic media

and represent a quasi-relativistic first order approximation

(i.e. terms of order v2/c2 are neglected) which is valid for

v ≪ c (see e.g. [6]). The symbols E, B, H, D and J

stand for electric field, magnetic flux density, magnetic field,

electric displacement and current density, respectively, and v

is the velocity of the medium, all these vector fields being

measured in the laboratory frame. As opposed to this, the

relative permittivity and permeability of the medium, εr and

µr, and specific conductivity σ are measured naturally in the

co-moving frame. Finally, ε0, µ0 and c0 are the permittivity,

permeability and speed of light in vacuum.

Similar magneto-electric coupling can be generated by spe-

cific composite meta-materials (at rest) too. Actually, this

property is long since known and exploited in transformation

optics (TO) among others to raise the illusion of motion [7].

It is all the more surprising therefore that this relationship was
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Fig. 1. The studied problem: “Sliding contacts”

not exploited in the opposite way, i.e. for modeling real motion

with fictitious material parameters; only very recently we can

find a somewhat similar 1D approach [8].

III. Illustrative example

The method is demonstrated here on a simple example of

sliding contacts (see [6] p.137). A conducting non-magnetic

slab is moving between two electrodes with constant velocity,

while a fixed DC current, I, is injected through it (Fig. 1).

Since the current distribution in the slab is stationary from the

point of view of the electrodes, it is worth to do the modeling

in the rest frame of the latter.

Following the reasoning of [6] one can see that the in-plane

current distribution can be expressed with the perpendicular

component of the magnetic field as J = ∇Hz × ez, with ez

being the unit vector in the z direction, and that for Hz the

following scalar PDE can be written:

∇2Hz − µ0σv · ∇Hz = 0. (4)

We examine here an aluminum slab of thickness 10 mm,

dragged with velocity 6 m/s in the x direction. The injected

current is prescribed by appropriate boundary conditions (fur-

ther details are omitted herein due to space constraints).

We intend to use the PDE Toolbox of Matlab R©, a simplistic

but quite flexible 2D FEM environment [9]. There is no

predefined PDE that matches (4) in it, so we fall back to the

generic elliptic PDE template,

−∇ · (c∇u) + au = f , (5)

in which u is the unknown scalar field and c, a, f are

parameters, which can be functions of the location and even

of the field itself.

A. Using the nonlinear solver of PDE Toolbox

For obtaining a reference solution, first we follow the way

described in point a) of section I. Considering u ≡ Hz we set

the parameters of (5) according to (4) as

c = 1, a = 0, f = −µ0σvx∂xu (6)

(note that partial derivatives of the scalar field, ∂xu and ∂yu, are

available in Matlab under the names ‘ux’ and ‘uy’). Because

of the u-dependent expression of f we are forced to use the

nonlinear solver, which makes 5 iterations in 2.58 seconds. The

streamlines of J are plotted in Fig. 2, in which the effect of

motion is apparent.

B. Substituting inhomogeneous anisotropic material

We developed a straightforward method (detailed in the full

paper) by which the first order motional term can be assimilated

into artificial material parameters. In the studied problem we

can use the following settings:

¯̄c =

(

1 −µ0σvxy

µ0σvxy 1

)

, a = 0, f = 0 (7)

(we utilize that c can be a tensor in Matlab). In this case we

can use the linear solver, which computes the field in one

step taking only 0.48 seconds. The current distribution (not

shown) is practically indistinguishable from that of the previous

solution. Remarkably, although the material parameters in (7)

seem to depend on the choice of the origin (y=0), the computed

field does not, of course.

The proposed method is rather general. For instance, we

successfully solved the problem “Scattering by a rotating

circular dielectric cylinder” (see [6] p.298) with it. Also the

Wilson&Wilson experiment [2] can be modeled using the same

apparatus. The full paper will contain —in addition to the

details of the method— a more complex 3D example, as well

as a study on the convergence properties.

Fig. 2. Streamline plot of the current density distribution in the slab

Acknowledgment

This work was supported by the Hungarian Scientific Research

Fund under grants K-105996 and K-111987.

References

[1] D. Rodger and H. Lai, “A comparison of formulations for 3D finite
element modeling of electromagnetic launchers,” Magnetics, IEEE Trans-
actions on, vol. 37, no. 1, pp. 135–138, Jan 2001.

[2] H. Heumann and S. Kurz, “Modeling and finite-element simulation of the
Wilson&Wilson experiment,” Magnetics, IEEE Transactions on, vol. 50,
no. 2, pp. 65–68, Feb 2014.

[3] COMSOL AC/DC Module User’s Guide, v4.3 ed., Comsol Ab, 2012.
[4] J. Bird, “Modeling a 3D eddy current problem using the weak formulation

of the convective A*-φ steady state method,” in COMSOL Conference,
Boston, MA, USA, Oct. 8-10 2009.

[5] S. Williamson and E. Chan, “Three-dimensional finite-element formula-
tion for problems involving time-varying fields, relative motion, and mag-
netic saturation,” Science, Measurement and Technology, IEE Proceedings
A, vol. 140, no. 2, pp. 121–130, Mar 1993.

[6] J. V. Bladel, Relativity and engineering. Springer-Verlag, 1984.
[7] S. A. Tretyakov, I. S. Nefedov, and P. Alitalo, “Generalized field-

transforming metamaterials,” New Journal of Physics, vol. 10, no. 11,
p. 115028, 2008.

[8] J. Vehmas, S. Hrabar, and S. Tretyakov, “Transmission lines emulating
moving media,” New Journal of Physics, vol. 16, no. 9, p. 093065, 2014.

[9] Partial Differential Equation Toolbox User’s Guide, The MathWorks Inc,
2014.


